Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Determination and Verification of the Forchheimer Coefficients for Ceramic Foam Filters using COMSOL CFD Modeling

M.W. Kennedy[1], K. Zhang[1], J.A. Bakken[1], R.E. Aune[1]
[1]Norwegian University of Science and Technology, Trondheim, Norway

Experiments have been conducted with water at velocities from ~0.015-0.77 m/s to determine the permeability of 50 mm thick commercially available 30, 40, 50 and 80 Pores Per Inch (PPI) Ceramic Foam Filters (CFF) used for liquid metal filtration. Measurements were made using two different setups, for use with the Forchheimer equation: 49 mm \"straight through\" and 101 mm diameter \"expanding ...

3D COMSOL Multiphysics® Model of a Plate Heat Exchanger to Support a Laboratory Teaching Environment - new

N. Medeiros[1], W. Clark[1]
[1]Worcester Polytechnic Institute, Worcester, MA, USA

Chemical engineering students and practitioners need an understanding of fluid flow and heat transfer inside heat exchangers. Because the flow within plate heat exchangers is difficult to visualize, we developed COMSOL Multiphysics® simulations of plate heat exchangers for students to study alongside a physical heat exchanger in a laboratory setting. Simulative experiments allow students to ...

Water Quality Model for Brewster Lake

Z. Aljobeh[1], G. Argueta[1]
[1]Valparaiso University, Valparaiso, IN, USA

A numerical model was developed to make spatial and temporal predictions of the water quality for Brewster Lake, located in southwestern Michigan. The model considers the hydrodynamics of the lake, hydrologic conditions, physical, chemical and biochemical processes that take place in the lake, and nutrient loadings from the surrounding watershed. Physical, chemical, and biochemical data ...

High Frequency Resonators Using Exotic Nanomaterials - new

B. Panchapakesan[1], M. Loeian[1]
[1]Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Human made mechanical resonators have been around for a thousand years. Early applications included musical instruments and chronographs operating in millihertz to kilohertz frequencies while more recent interest has turned ultra-high frequency resonators and oscillators suitable for wireless technologies, mass sensing and even biological applications. The trend has been towards small, stiff and ...

COMSOL API Based Toolbox for the Mixed-Level Modeling of Squeeze-Film Damping in MEMS: Simulation and Experimental Validation

M. Niessner[1], G. Schrag[1], J. Iannacci[2], and G. Wachutka[1]
[1]Institute for Physics of Electrotechnology, Munich University of Technology, Munich, Germany
[2]MEMS Research Unit, Fondazione Bruno Kessler, Povo di Trento, Italy

We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The results obtained from mixed-level model simulation performed in COMSOL Multiphysics agree very well with ...

FEM Analysis of Flamelet Wrinkling in a Diffusion Flame - new

Y. Li[1], T.C. Lieuwen[2], J. Zhou[1], H. Cao[1]
[1]Zhengzhou University, Zhengzhou City, Henan Province, China
[2]Georgia Institute of Technology, Atlanta, GA

One can hardly get the exact analytic solution of a full time-dependent convection-diffusion equation, for describing the dynamics of a non-premixed flamelet. The analytic solution of the linearized form with such a model was studied by MATLAB®. And also, a numerical computation was made with the linearization model in COMSOL Multiphysics® software, to provide a perfect accordance with the ...

On the Formation of a Sticking Layer on the Bearing during Thin–Section Aluminium Extrusion

X. Ma[1], M.B. de Rooij[2], and D.J. Schipper[2]

[1]Materials Innovation Institute, Enschede, The Netherlands
[2]University of Twente, Enschede, The Netherlands

This paper describes the use of COMSOL Multiphysics® to determine the shear layer thickness in thin–section aluminum extrusion, based on the minimum work criterion. The studied two aluminum alloys are AA 6063 and AA 7020. The results show that a continuous shear layer featuring shear localization due to localized thermal softening is not possible to form under typical thin&ndash ...

Semismooth Newton Method for Gradient Constrained Minimization Problem

S. Anyyeva, and K. Kunisch
Institute of Mathematics and Scientific Computing
Karl Franzens University
Graz, Austria

We treat a gradient constrained minimization problem which has applications in mechanics and superconductivity. A particular case of this problem is the elastoplastic torsion problem. In order to solve the problem we developed an algorithm in an infinite dimensional space framework using the concept of the generalized Newton derivative. The Desktop environment of COMSOL Multiphysics 4.1 was ...

Simulation of Nanopores in Capacitive Energy Extraction Based on Double Layer Expansion (CDLE)

E. Ruiz-Reina [1], F. Carrique [2], A.V. Delgado [3], M.M. Fernández [3],
[1] Department of Applied Physics II, University of Málaga, Málaga, Spain
[2] Department of Applied Physics I, University of Málaga, Málaga, Spain
[3] Department of Applied Physics, University of Granada, Granada, Spain

Capacitive energy extraction based on double layer expansion (CDLE) is a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. First suggested by D. Brogioli, it is enclosed in a group of emergent technologies jointly known as Capmix methods. The CDLE technique is based on the fact that the capacitance of the electric double layer (EDL) ...

Chaotic Behavior of the Airflow in a Ventilated Room

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Chaotic systems may lead to instability, extreme sensitivity and performance reduction. Therefore it is unwanted in many cases. Due to these undesirable characteristics of chaos in practical systems, it is important to recognize such a chaotic behavior. The existence of chaos has been discovered in several areas during the last 30 years. However, there is a lack of studies in relation with ...