Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulation of the Thermal Expansion of an Inductively Heated Gear Wheel for Shrink Fitting Purposes

C. Hollenbeck [1], Z. Jildeh [1], T. Rydlewski [1], P. Kirchner [1],
[1] Imagine Engineering GmbH, Bergheim, Germany

Due to the advantages of induction heating as a method for precise and efficient local heating, it is perfectly suited for thermal shrink fitting of a gear wheel on a shaft. In this work, a simulation model was established to study the induction heating of a gear wheel, its thermal expansion as well as the shrink fitting process. It was possible to find an appropriate geometry for the induction ...

Introduction to COMSOL based Modeling of Levitated Flywheel Rotor

A. Pilat
AGH University of Science and Technology
Kraków, Poland

This elaboration presents a pre-study on automatic rotor construction for the flywheel energy storage system dedicated to operate in the levitation mode. The optimization profile model is used as a basic profile source. The 3D flywheel shape is generated on the base of obtained profiles. Eigenfrequencies are calculated to validate the operation on rigid mode. A steel and aluminum based ...

Numerically Closing the Loop of the Adaptive Optics Sensor: the Validation of the COMSOL Multiphysics® Simulation - new

C. Del Vecchio[1], R. Briguglio[1], A. Riccardi[1]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

As any other modelling of a physical behavior, the numerical simulation of the mechanical response of an adaptive secondary mirror requires that the results match the experimental data. Such an agreement was recently demonstrated for the local mirror stiffness of the LBT and VLT Deformable Mirrors; a reliable modeling is a good tool for the extrapolation of the missing optical data (spider ...

Determination of the Fundamental Resonant Modes of a Polysilicon H-Beam Using COMSOL Multiphysics® Software

T. Thomas[1], M. Sundaram[1], R. Bejam[1]
[1]Birla Institute of Technology and Science, Pilani - Pilani Campus, Rajasthan, India

A Polysilicon H-beam is a micro-machined structure consisting of two primary members connected by a third member of much lower width and much greater aspect ratio. This structure exhibits interesting vibration behavior at specific frequencies which are known as resonant modes. A ‘mode’ may be described as a specific physical shape that the vibrating object assumes at peak oscillation amplitude ...

Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites

V. Antonucci[1][2], M. Esposito[1], R. Marzella[2], and M. Giordano[1][2]
[1]Institute for Composite and Biomedical Materials, CNR, Portici, NA, Italy
[2]Imast, Portici, NA, Italy

A quasi static indentation test on a laminate composite has been investigated numerically and experimentally. In particular, the test has been implemented by COMSOL Multiphysics® and optimizing the Finite Element and mesh. In addition, the numerical strain results have been validated by the comparison with the respective experimental deformation data that have been obtained by fiber Bragg ...

Design and Optimization of Highly Sensitive Single Axis Accelerometer using COMSOL Multiphysics®

Kunal A.Kshirsagar[1], K.Govardhan[1],
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

Accelerometers are successfully commercialized MEMS devices. COMSOL Multiphysics® has been used in the modeling, simulation and optimizing of this design. The piezoresistive accelerometer is made up of a square proof mass with flexures supporting it. The piezoresistors are placed near the proof mass and frame ends of the flexure and the springs. There is an elongation or shortening of the ...

Structural Optimization of the AISHa Ion Source - new

F. Noto[1], M. Piscopo[1], L. Celona[1], D. Cittadino[1], S. Gammino[1], G. Cuttone[1], G. Gallo[1], G. Schillaci[1], C. Campisano[2], L. Lo Nigro[3], G. Costa[3], A. Campisano[4]
[1]Laboratorio Nazionale del Sud, Santa Sofia, Catania, Italy
[2]Gravina di Catania, Sicily, Italy
[3]Trinacria, Canalicchio, Catania, Italy
[4]Unico Informatica, li Battiati, Catania, Italy

Different facilities for hadrontherapy have been built in the recent past. AISHa ion source has been designed by keeping in mind the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. The study of some critical parts of the facilities: the ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

A Simplified Approach to the Contact in Thermo-mechanical Analysis of Refractory Linings

Y. Kaymak
VDEh Betriebsforschungsinstitut GmbH
Düsseldorf, Germany

The geometrical design and material choice for a refractory lining requires a good understanding of its thermo-mechanical behavior. Design engineers clearly need a tool for fast and efficient computation of thermo-mechanical state of refractory linings under various conditions. However, standard simulation models and their solutions suffer as the linings are composed of many refractory blocks in ...

µHeater on a Buckled Cantilever Plate for Gas Sensor Applications

A. Arpys Arevalo Carreno[1], E. Byas[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

In semiconductor gas sensors, the base of the gas detection is the interaction of the gaseous species at the surface of the semiconducting sensitive material. Since the chemical reactions at the surface of the sensor material are functions of temperature. We simulate our µHeater design on a Buckled Cantilever Plate (BCP). Such structure allows the sensor to be suspended for thermal insulation. ...