Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Radial Source Flow in Porous Media: Miscible Viscous Fingering Patterns

V. Sharma [1], S. Pramanik [2], M. Mishra [1],
[1] Indian Institute of Technology Ropar, Rupnagar, India
[2] Indian Institute of Technology Ropar, Rupnagar, India; Nordita, SE-10691 Stockholm, Sweden.

COMSOL Multiphysics® software was used to model radial source flow in two dimensional homogeneous porous media. Two-Phase Darcy's Law (tpdl) is used to model miscible viscous fingering. Fingering patterns obtained on using different mesh are discussed. Evolution from 'flowers' to 'branches' is observed in the fingering patterns. Stable displacement is generated even in the presence of unstable ...

Modeling Flow and Deformation during Hot Air Puffing of Single Rice Kernels

T. Gulati[1], A. Datta[1]
[1]Cornell University, Ithaca, NY, USA

When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ratio of initial volume to volume after puffing could be as high as 10. Rice puffing process is a complex ...

Modeling of Kinetic Interface Sensitive Tracers for Two Phase Immiscible Flow in Porous Media with COMSOL Multiphysics® Software - new

A.-B. Tatomir[1], F. Maier[1], A. Jyoti[1], M. Sauter[1]
[1]Geoscience Centre of the University of Göttingen, Göttingen, Germany

The understanding of the tracer migration in two-phase porous media systems and its reaction over the fluid-fluid interfaces is a challenging task important for a number of engineering applications, e.g. oil recovery, carbon capture and storage in geological reservoirs, remediation groundwater contaminations, etc. The goal of this work is to implement in COMSOL Multiphysics® an immiscible two ...

Transdermal Drug Delivery with Permeation Enhancer

A. Kermani [1], N. Elabbasi [1]
[1] Veryst Engineering, Needham, MA, USA

Transdermal drug delivery (TDD) is used to deliver drugs through the skin as an alternative to oral, intravascular, and subcutaneous routes. While there are many advantages to TDD, skin is a very effective barrier and provides resistance to drug delivery. To improve drug delivery through the skin, permeation enhancers are used. We developed an axisymmetric COMSOL Multiphysics® software model ...

Modeling and Simulation of Hydrogen Storage Device for Fuel Cell Plant Using COMSOL Multiphysics

O. Akanji, and A. Kolesnikov
Department of Chemical & Metallurgical Engineering
Tshwane University of Technolgy
Pretoria, South Africa

In this work, a 2D dynamic simulation for a portion of metal hydride based hydrogen storage tank was performed using computational software COMSOL 4.0a Multiphysics. The software is used to simulate the diffusion and heating of hydrogen in both radial and axial directions. The model consists of a system of partial differential equations (PDE) describing two dimensional heat and mass transfer of ...

Optimization of the Herringbone Type Micromixer Using Numerical Modelling and Validation by Measurements - new

E. Tóth[1], K. Iván[1], P. Fürjes[2]
[1]Pázmány Péter Catholic University, Budapest, Hungary
[2]Research Centre for Natural Sciences Institute for Technical Physics and Materials Science Hungarian Academy of Sciences, Budapest, Hungary

COMSOL Multiphysics® software was used in this study to simulate mixing by diffusion and by secondary flow. Particle tracing model was applied to simulate the mixing of cells in the microchannel. Results agreed well with the measurement, an optimal herring-bone structure was proposed for integration into a bioanalytical system.

Simulation and Validation of Pan Evaporation Rates Using COMSOL Multiphysics® Software

L. J. Matel [1]
[1] Green Streets Infrastructure LLC, Seattle, WA, USA

The four foot diameter class A evaporation pan is used by the scientific community as the standard for determining evaporation rates for a number of purposes. The COMSOL Multiphysics® software provides the necessary tools to adequately develop synthetic estimates of evaporation values for input into hydrologic simulation models and other earth science applications. This paper presents ...

Reynolds Number Dependent Porous Media Flow Using the Brinkman Equation

R. Rieck[1], A. Bénard[1], and C. Petty[1]
[1]Michigan State University, Michigan, USA

Porous media fluid dynamic modeling has been widely explored and utilized in many academic and industrial applications. Cross flow filtration being one attractive application, whereas the fluid and filtrate flow parallel the porous media, and thereby induce shearing stress along the membrane surface to reduce fouling. In modeling porous media flow, it is common to describe the porous domain by ...

Moisture Risks in Multi-layered Walls - Comparison of COMSOL Multiphysics® and WUFI®PLUS Models with Experimental Results

A. Ozolins[1], A. Jakovics[1]
[1]Laboratory for Mathematical Modelling of Technological and Environmental Processes, Riga, Latvia

Moisture can cause serious damages in different building components therefore the heat and moisture calculation in building constructions are important tasks. In the current paper, two different multi-layered walls, mainly consisted of wooden materials and mineral wool, are analyzed. Risks of mould growth under Latvian climate conditions are estimated using 3 different approaches: experimental ...

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...