Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulator for Automotive Evaporative Emissions Restraint Systems

S. Schlüter [1], E. Schieferstein [1], T. Hennig [1], K. Meller [1],
[1] Fraunhofer UMSICHT, Oberhausen, Germany

Fuel vapor restraint systems are used in vehicles to avoid discharge of volatile hydrocarbons from fuel tanks. The topic of this paper is the proper operation of fuel vapor restraint systems depending on the composition of bioethanol-fuel-blends. Experimental data serve as input to a model built with COMSOL Multiphysics® to simulate the performance of fuel vapor restraint systems depending on ...

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

Simulating the Electrical Double Layer Capacitance

G. Zhang
Clemson University, Clemson, SC, USA

When a solid surface makes contact with a liquid medium, an electrical double layer (EDL) structure forms spontaneously through thermodynamic interaction between electrons and ions. In this study, we developed a computational model using commercial finite element analysis package COMSOL Multiphysics to simulate the double layer structure and quantify the EDL capacitance for the first time. In ...

Modeling of Transport Phenomena in Laser Welding of Steels

A. Métais [1], S. Matteï [2], I. Tomashchuk [2], S. Gaied [1]
[1] ArcelorMittal, Montataire, France
[2] Laboratoire Interdisciplinaire Carnot de Bourgogne, Université Bourgogne Franche Comté, France

Laser Welded Blank solutions enable to reduce vehicles weight and to optimize their crash performances by means of simultaneous tuning of different grades and thicknesses. The present work aims to characterize numerically and experimentally materials mixing during laser welding. For better understanding of materials mixing based on convection-diffusion process in case of full penetrated laser ...

Non-isothermal Flow of CO2 in Injection Wells: Evaluation of Different Injection Modes

O. Silva [1],
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Injection conditions of CO2 at the wellhead may play a major role on the flow behavior through the wellbore. The density and the injection rate reached at the bottomhole are key factors affecting the performance and efficiency of CO2 geological storage. In this work, a model of non-isothermal flow of CO2 in injection wells is developed using COMSOL Multiphysics® software and used to assess ...

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a specified flow rate. Effects of different catalysts, screen sizes and flow direction were simulated. Factors ...

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method - new

J. Hu[1], R. Jia[1], K. Wan[2], X. Xiong[3]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
[3]Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA

The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation results were validated against experimental results. It was found that the Level Set method can predict the ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

A Wall-Cooled Fixed-Bed Reactor Model for Gas-Phase Fischer-Tropsch Synthesis

A. Nanduri [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal gasification, to a wide range of high value-added products. This process later came to be known as Fischer-Tropsch (F-T) ...

Understanding the Transition Flow Region through Modeling in COMSOL Multiphysics® Software

J. Sturnfield [1],
[1] Dow Chemical, Freeport, TX, USA

The pore sizes of many membranes being studied for separating the components in gas mixtures are on the scale of nanometers. Depending on the specific gases and pressures being used, this scale will put the flows in the Transition between Slip Flow and Knudsen regime. The differential flow of the gas components gives the relative diffusion of the gases through the membrane. There are a number of ...