Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying

A. Warning[1], J. M. R. Arquiza[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

A continuum, porous medium formulation with non-equilibrium sublimation was developed and validated for freeze drying without and with uniform microwave volumetric heating. The model incorporates the effect of Knudsen flow at low pressure and low permeability freeze drying. The distributed, non-equilibrium sublimation demonstrated that the sublimation front is a sharp boundary for high ice ...

Reverse Electrodialysis Process with Seawater and Concentrated Brines: a COMSOL Multiphysics® Model for Equipment Design

M. Tedesco[1], A. Cipollina[1], C. Scavuzzo[1], A. Tamburini[1], G. Micale[1]
[1]Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo (UNIPA), Palermo, Italy

Salinity Gradient Power (SGP) is a promising renewable energy source associated to the controlled mixing of two aqueous solutions of different salinities. Recently, Reverse Electrodialysis process (SGP-RE, or RED) has been identified as a successful way for the exploitation of such energy source, allowing the conversion of SGP directly into electric energy. COMSOL Multiphysics® modelling ...

Comparison Between Flow Simulations and Foam Experiments in Porous Media

R.R. Thorat[1], H. Bruining[1]
[1]Petroleum Engineering, CiTG, TU Delft, Delft, The Netherlands

Recovery of oil by gas injection is usually inefficient due to the low viscosity of the gas, which results in bypassing of the oil. By adding surfactant solutions it is possible to get in-situ foam formation. Foam has a much higher “viscosity” and hence does not bypass the oil, leading to enhanced oil recovery. In this context, the foam propagation is studied experimentally and theoretically. We ...

A 2D Model of the Flow in Hydrocyclones - new

B. Chinè[1], F. Concha[2], M. Meneses G.[3]
[1]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2]Department of Metallurgical Engineering, University of Concepcion, Concepcion, Chile
[3]School of Production Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Hydrocyclones are industrial devices used as processing units in fluid and particle technology. A hydrocyclone is an apparatus consisting of a cylindrical or a cylindrical-conical body with a tangential or involute entrance to admit the fluid inside. There are also two opposite exits, the top exit which is the vortex finder and the bottom exit called apex. Fig. 1 shows the schematic of a widely ...

Fluid Dynamics Analysis of Gas Stream in a Plasma Torch Reactor - new

C. Soares[1], N. Padoin[1], F. A. Cassini[1], M. Sanchez[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]University of Oklahoma, Norman, OK, USA

Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the region of the electrical arc is essential for the development of a well-behaved torch. In this work, a ...

Cluster Diameter Determination of Gas-solid Dispersed Particles in a Fluidized Bed Reactor

M. Das
Department of Biotechnology, PESIT, Bangalore, Karnataka, India

Clustering is a common hydrodynamic characteristic observed among suspended gas-solid particles in a fast fluidized bed (FFB) regime of a circulating fluidized bed (CFB) system. In this paper clustering behavior has been studied with Geldart group B particles like coal and iron ore in a circulating fluidized bed of diameter 0.1016 m and height 5.62 m. The cluster size when calculated from the ...

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

Acid-Base Reactions Enhancing Membrane Separation: Model Development and Implementation

C. Bayer[1], S. Stiefel[1], M. Follmann[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Reactive extraction of organic acids from an aqueous solution to an alkaline stripping fluid is based on a selective barrier allowing permeation of non-polar molecules, which subsequently react with the stripping agent. The shift from the organic acid to its base induced by the chemical equilibrium enhances mass transfer inside the membrane’s porous substructure. A model of the porous ...