Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation and Validation of Pan Evaporation Rates Using COMSOL Multiphysics® Software

L. J. Matel [1]
[1] Green Streets Infrastructure LLC, Seattle, WA, USA

The four foot diameter class A evaporation pan is used by the scientific community as the standard for determining evaporation rates for a number of purposes. The COMSOL Multiphysics® software provides the necessary tools to adequately develop synthetic estimates of evaporation values for input into hydrologic simulation models and other earth science applications. This paper presents ...

Computational Evaluation of Improved Anaerobic Digestion Reactor Designs

A. A. Forbis-Stokes [1], M. A. Deshusses [1],
[1] Duke University, Durham, NC, USA

The purpose of this study was to investigate the impact on number of baffles placed in horizontal- or vertical-alignment of an anaerobic baffled reactor (HABR and ABR, respectively). Computational fluid dynamics was used to evaluate hydraulic performance of each and determine what number of compartments should be used to optimize reactor volume while adding minimal complexity. The findings ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]

[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are ...

Model of a Heavy Metal Adsorption System using the S-Layer of Bacillus Sphaericus

J. Orjuela, and A. González
Dept. de Ingeniería Química Facultad de Ingeniería
Universidad de los Andes

A bidimensional and pseudo homogenous model was proposed for the study of mass transfer in the bioadsorption process of chromium VI in the S-layer of immobilized Bacillus sphaericus in a packed column. The implementation of such a model in COMSOL Multiphysics will be explained in detail and the final results presented. These include chromium concentration profiles along the column and its ...

Modeling Flow and Deformation during Hot Air Puffing of Single Rice Kernels

T. Gulati[1], A. Datta[1]
[1]Cornell University, Ithaca, NY, USA

When rice is subjected to intense heating, it results in rapid evaporation of liquid water to vapor. As a consequence, large pressures are generated within the kernel in a span of 15s resulting in large volume changes causing the kernel to puff rapidly. Under suitable conditions, the ratio of initial volume to volume after puffing could be as high as 10. Rice puffing process is a complex ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Using Computational Fluid-Dynamics (CFD) for the Evaluation of Tomato Puree Pasteurization: Effect of Orientation of Bottle - new

A. R. Lespinard[1, 2], R. H. Mascheroni[1, 2]
[1]Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina
[2]Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina

Determination of the temperature in liquid foods may be derived by measurements or by modeling. However, the placement of thermocouple probes to record temperature in the container disturbs the flow patterns. For this purpose, Computational fluid-dynamics (CFD) offers a powerful tool for predictions of the transient temperature and velocity profiles during natural convection heating of liquid ...

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...