See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Transport Phenomenax

Numerical and Experimental Investigation of Natural Convection Flow of (Sub-) and (Super-) Critical CO2 in Aqueous Phase

R. Khosrokhavar[1], G. Elsinga[1], R. Farajzadeh[2], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherland
[2]Shell International Global Solutions, Amsterdam, The Netherland

Optimal storage of carbon dioxide (CO2) in aquifers requires dissolution in the aqueous phase. Transfer of CO2 from the gas phase to the aqueous phase or oil phase would be slow if it were only driven by diffusion. Dissolution of CO2 in brine (oil) forms a mixture that is denser than the ... Read More

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in ... Read More

Numerical Simulations of Methane Aromatization with and without a Ceramic Hydrogen Separation Membrane

Z. Li[1], C. Kjølseth[2], S. Hernandez Morejudo[3], R. Haugsrud[1]
[1]University of Oslo, Department of Chemistry, FERMiO, Oslo, Norway
[2]Protia, Oslo, Norway
[3]University of Oslo, Department of Chemistry, InGAP, Oslo, Norway

Oxygen-free methane aromatization has been attracting growing attention due to a potential means for producing high valuable products such as aromatics and hydrogen. Many studies have been focused on catalysts screening and characterization, and elementary thermodynamic steps of the ... Read More

Heat and Mass Transfer Modeling During Freezing of Foodstuffs

O. Rouaud[1], T. Pham[2]
[1]LUNAM Université, ONIRIS, CNRS, GEPEA, UMR, Nantes, France
[2]University of New South Wales, Sydney, Australia

A mathematical model is developed to determine the weight loss and the freezing rate during the freezing of unwrapped foodstuffs. The model allows comparing two freezing processes; the first uses nitrogen gas at -80°C and the second uses cold air. The model includes thermophysical ... Read More

Heat, Air, and Moisture (HAM) Modeling of Historic Windows

H.L. Schellen[1]
[1]Eindhoven University Of Technology, Eindhoven, The Netherlands

Windows are the thermal weakest places in the external envelop of buildings. This is true for historic windows with original single pane glazing in historic buildings. To reduce the energy consumption and to improve thermal comfort of historic buildings, replacing these windows by modern ... Read More

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is ... Read More

Coupled Heat and Moisture Transfer in Building Components - Implementing WUFI® Approaches in COMSOL Multiphysics

B. Nusser[1], M. Teibinger[1]
[1]Holzforschung Austria, Vienna, Austria

Calculating time-dependent heat and moisture transports trough building components are important tasks in the area of building physics. A well known and worldwide used commercial software for this is WUFI®. From the scientific point of view the restricted access to governing equations is ... Read More

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some ... Read More

Multiphysics Modeling of Swelling Gels

A. Lucantonio[1], P. Nardinocchi[1], L. Teresi[2]
[1]Università degli Studi La Sapienza, Roma, Italy
[2]LaMS - Modelling & Simulation Lab, Università degli Studi Roma Tre, Roma, Italy

Polymer gels belong to the realm of soft active materials as they are capable of responding to a non-mechanical stimulus – the permeation of a solvent – with a mechanical action – a volume change, thanks to the coupling between different physics. This mechanism of coupling can be ... Read More

Numerical Study and Simulation in COMSOL Multiphysics of the Dilution Process during Dust Sampling in Dry Machining

B. Wenga-Ntcheping[1], A. Djebara[1], R. Kamguem[1], J. Kouam[1], V. Songmene[1]
[1]University of Quebec-École de Technologie Supérieure, Montreal, Canada

Dilution’s issue during dry machining have raised the interest’s environmental researchers and engineers. In fact, the sampling of dust emitted during dry machining was a serious problem for air quality evaluation at the workplace. Furthermore, the best sampling of fine and ultrafine ... Read More