Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Deep-Seated Spreading Model Tested on Etna Mount with FEM

F. Pulvirenti[1,2], M. Aloisi[1], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia sezione di Catania
[2]Università di Catania

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward.  According to the deep-seated spreading model, both the volcanic edifice and its uppermost basement are spreading eastwards because of magma inflation processes related to a dike complex located at a depth between the summit craters and the Valle del ...

Chemical Leachate Simulation for Environmental Safety Evaluation in Civil Engineering Applications of Construction Byproducts

H. Ishimori
National Institute for Environmental Studies, Tsukuba, Japan

This presentation shows a numerical simulation model of the chemical leachate process from construction byproducts and the chemical transport process with geochemical reactions for their environmental safety evaluation.

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

Engineering Light Photonics, Plasmonics and Meta-materials

Dr. A. Prabhakar
Dept. of Electrical Engineering, IIT-Madras, Chennai, Tamil Nadu, India

Anil Prabhakar joined the faculty at IIT-Madras in 2002, after 5 years of post-doctoral experience in the hard disk drive industry. His current research interests include photonics, spintronics, nonlinear dynamics and alternative and augmentative communication. As a member of the Optics Group in the Dept. of Electrical Engineering, he is actively involved in areas of data storage, ...

Electrostatic Fluid Structure Interaction (EFSI) on the Huygens Experiment

R. Godard [1], J. de Boer[1], N. Ibrahim[2], and G. Molina-Cuberos[3]
[1]Royal Military College of Canada, Kingston, ON, Canada
[2]University of Toronto, Toronto, ON, Canada
[3]Campus Espinardo, Murcia, Spain

The Huygens Atmospheric Structure Instrument (HASI) was designed to characterize the physical properties of the lower atmosphere and surface of Titan, the planet-size moon of Saturn. The Relaxation Probe (RP) sensor on the Huygens probe, determined the electrical conductivity in the lower atmosphere of Titan, from 140 km to 40 km. It was suspected that at an altitude above 100km, the booms ...

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and the ...

COMSOL Modelling of the Wind Effect on a PV Platform

A. Georgescu, and A. Damian
Technical University of Civil Engineering Bucharest, Bucharest, Romania

The objective of the paper is the assessment of the wind load applied to a real photovoltaic (PV) platform installed on a site situated in Brasov, which belongs to the Transilvania University. The platform has a double-tracking axis mechanism which allows the rotation of the platform disk depending on the sun position, in order to gather the maximum solar yield to produce electricity. The study ...

Dynamic Model for Catenary Mooring: Experimental Validation of the Wave Induced Load

L. Martinelli[1], A. Spiandorello[2], P. Ruol[3], and A. Lamberti[1]
[1]DICAM, Università di Bologna, Italy
[2]Civil Engineer, Italy
[3]IMAGE, Università di Padova, Italy

This paper will present a numerical model based on COMSOL Multiphysics suited to simulate the dynamic response of a catenary mooring (or a submarine cable). In general, mooring lines are subject to a direct wave load (e.g. drag, inertia) in addition to the movement of the vessel to which they are linked. Tests were carried out at the wave flume of the Maritime Laboratory of IMAGE Department, ...

The Soil as Bioreactor: Reaction-diffusion Processes and Biofilms

M. Richter[1], S. Moenickes[2], O. Richter[2], T. Schröder[1]
[1]BASF SE, Agricultural Center, Limburgerhof, Germany
[2]Institute of Geoecology, TU Braunschweig, Braunschweig, Germany

In a soil pore, water flows through the biofilm, where the density of the latter was assumed to represent a flow resistance. This mechanism was implemented as a local change of fluid viscosity proportional to local biofilm density. It was assumed that diffusive substrate transport is possible through the biofilm region such that the biofilm was able to degrade the substance. Maximum flow ...

3D FEM-analysis of a Micromachined Wind Sensor Based on a Self-heated Thermistor Array

A. Talic[1], S. Cerimovic[2], M. Mutapcic[2], R. Beigelbeck[1], and F. Keplinger[2]
[1]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

We present COMSOL-based analyses and design optimizations of a micromachined wind sensor. The sensor relies on eight germanium thermistors embedded in a thin silicon nitride membrane, where two orthogonally arranged ensembles, each consisting of four thermistors, are connected to form a double Wheatstone-bridge. In operation, each bridge is supplied by a constant current and the self-heating of ...

Quick Search

2701 - 2710 of 3228 First | < Previous | Next > | Last