Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CFD/Electromagnetics Interactions via Realistic Heat and Mass Transfer to Moist Substrates - new

G. Ruocco[1], M. V. De Bonis[2]
[1]Engineering College, University of Basilicata, Potenza, Italy
[2]I​nstitute of Food Science and Production, National Research Council, Bari, I​taly

Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase chemical species) and fluid (auxiliary air) phases. In this way the heat and mass fluxes vary seamlessly ...

Optimizing Design of Soil Mixing Equipment through COMSOL Multiphysics® Simulations

T. Qiu[1], W. C. Kogelmann[2], K. Talebi[3]
[1]Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
[2]Alpine Sales & Rental Corp./Alpine Equipment LLC, State College, PA, USA
[3]Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA, USA

Soil mixers are widely used to mix biochemical agents and additives to remediate contaminated soils or drill cuttings and sludges. Through COMSOL Multiphysics simulations, this paper aims to evaluate the effect of geometric configuration of the blades and rotational speed on the mixing performance of various soil mixers. A numerical model is developed to simulate the complex interaction between ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

Transient Simulation of the Electrolyte Flow in a Closed Device for Precise Electrochemical Machining - new

M. Hackert-Oschätzchen[1], M. Penzel[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1,2]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Precise electrochemical machining (PEM) is an innovative machining technology which results from further development of the electrochemical sinking. PEM works with pulsed low frequency direct current and oscillation of the tool electrode. As part of the project ‘Electrochemical machining of internal precision and micro-geometries with high aspect ratios by process-state-dependent electrolyte ...

Numerical Simulation of Exact Two-Dimensional Governing Equations for Internal Condensing Flows

S. Mitra, R. Naik, and A. Narain
Michigan Technological University, Houghton, MI, USA

The paper outlines a two-dimensional computational methodology and presents results for laminar/laminar condensing flows inside mm- scale ducts. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady and unsteady flows. The results obtained are shown to be in agreement with an independently developed ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub height. ...

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and microfluidic applications. Magnetic fluids (also called ferrofluids), in a magnetic field, experience a magnetic force ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Simulation and Optimization of the Speed Flow in COMSOL Multiphysics® during the Suction of the Dust Pump for Granite Polishing Operation

B. Wenga[1], J. Kouam[1], A. Djebara[2], A. Bahloul[2], V. Songmene[1]
[1]École de Technologie Supérieure, Verdun, Montreal, QC, Canada
[2]Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC, Canada

Polishing is one of the oldest finishing processes. However, exposure to emissions of crystalline silica dust is high. Some toxicological studies have identified this pollutant as responsible for a particular type of lung cancer, silicosis. Operational solutions are needed for reducing near-field emissions of fine and ultrafine dust. Granite dust is emitted at high concentrations during ...

Air Flow Effect on the Temperature of a Building Integrated PV-Panel

G. Florides[1], S.A. Kalogirou[1], L. Aresti[1], R. Agathocleous[1], P. Christodoulides[1]
[1]Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus

This study examines the effect of air flow between the building integrated PV-panel and the wall. To formulate the heat exchange process for the air flowing between the PV panel and the wall, time-dependent, heat transfer partial differential equations (PDEs) are solved with COMSOL Multiphysics®. It is shown that in summer, the maximum temperature of a PV panel is observed on an east facing ...