Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CAE-Based Design and Optimization of a Plasma Reactor for Hydrocarbon Processing

C. Soares [1], F. A. Cassini [1], N. Padoin [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Plasma reactors can be applied to the conversion of waste, biomass and fuels to synthesis gas (mixture of hydrogen and carbon dioxide) with efficiencies as higher as 90-95% and low energy demand, depending on the design optimization. In this work, a multi-step approach was applied to the investigation of the main physics involved in a rotating gliding arc (RGA) discharge reactor. COMSOL ...

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not practicable on the reservoir scale, so a Darcy (or Brinkman) approximation has to be found. The key task is to find ...

Thermal Modeling of a Honeycomb Reformer Including Radiative Heat Transfer

J. Schöne[1], A. Körnig[1], W. Beckert[1]
[1]Fraunhofer IKTS, Dresden, Germany

Reformer and catalytic burners are common components in fuel cell systems, crucial for efficient preparation of fuel and exhaust gases of the fuel cell stack. We intend to show the influence of radiation to the temperature distribution inside of a reformer unit. The model consists of an axisymmetric representation of the inlet-zone and a catalytic porous zone. Fluid flow, convective and ...

Advanced Multiphysics Thermal Hydraulic Models for the High Flux Isotope Reactor

P. K. Jain [1], J. D. Freels [1],
[1] Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel are ongoing at ORNL as part of an effort sponsored by the U.S. Global Threat Reduction Initiative program. HFIR is a very high flux, pressurized light-water-cooled and moderated, flux-trap type research reactor whose current missions are to ...

Turbulent Bounded Flows for Oil & Gas Industry with COMSOL CFD Module

A. Fadel[1], G. Fontana[1]
[1]Isoil Impianti, Albano S. Alessandro, Italy

Industrial applications of fluid mechanics can require to satisfy necessities as diverse as legal norms, optimization requirements and manufacturing constraints. Therefore a Computational Fluid Mechanics software often becomes a must in the development of new devices or the improvement of older ones. Besides the legalistic aspect (such as the European Pressure Equipment Directive), several steps ...

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Simulation of Yield-Stress Fluid in a Rotational Rheometer: The Effect of Vane Geometry on the Accuracy of Measured Properties

J. Park [1], A. M. Oliva [1], N. R. Hargrave [1], D. Feys [2],
[1] Department of Chemical and Biochemical Engineering, Missouri University of Science & Technology, Rolla, MO, USA
[2] Department of Civil, Architectural & Environmental Engineering, Missouri University of Science & Technology, Rolla, MO, USA

A rotational rheometer for Self-Consolidating Concrete was simulated as a yield-stress fluid in a 2D geometry. The effect of the vane geometry was investigated by comparing the analytical solutions with the numerical output for flow in the coaxial cylinders. This effect was studied by investigating the torque vs rotational velocity relation, the flow pattern, and the shear stress distribution. ...

Modeling Transient Adsorption/Desorption Behavior in a Gas Phase Photocatalytic Fiber Reactor

S. Denys [1], J. Van Walsem [1],
[1] Sustainable Energy, Air & Water Technology, Department of Bioscience Engineering, University of Antwerp, Belgium

Integration or retrofitting of photocatalytic air purifying units into HVAC (Heating, Ventilation and Air Conditioning) equipment is an interesting approach for abating indoor air pollution and removal of volatile organic compounds. An attractive possibility is the use of glass fiber filter mats, coated with a photocatalyst. The thin, long fibers not only offer the advantage of exposing a large ...

Flare System Pressure Drop Calculations Using COMSOL

K. Alhazza[1], B. Albusairi[1], H. Kamal[1], H.M.S. Lababiedi[1], A.A. Abbas[2]
[1]Kuwait University, Kuwait City, Kuwait
[2]Petrochemical Industries Company, Kuwait City, Kuwait

COMSOL Multiphysics has been used to validate and check the design of a header transporting ammonia gases released from pressure safety valves (PSVs) to the tip of the flare. The header is part of a dedicated flaring system to contain emissions from ammonia storage tanks. The two main challenges are the low relief pressure and high capacity of the system. Another difficulty is the high relief ...

Numerical Study of the Controlled Droplet Breakup by Static Electric Fields inside a Microfluidic Flow-focusing Device

Y. Li[1], K. Nandakumar[1], M. Jain[1]
[1]Louisiana State Univeristy, Baton Rouge, LA, USA

Conventional passive microfluidic flow-focusing devices confront difficulties in controlling droplet sizes in dripping regime especially when the dispersed phase has a large viscosity. It is reported that external electric field can be used to manipulate the droplet breakup. In the present study, a computational fluid dynamics based level-set method coupled with perfect dielectric model has been ...