See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Simulation of a Magnetophoretic Device for the Separation of Colloidal Particles in Magnetic Fluids

S.K. Fateen, and M. Magdi
Cairo University, Giza, Egypt

Magnetophoresis of non-magnetic particles is the induced motion of non-magnetic particles suspended in magnetic media on the application of a magnetic field gradient. Magnetophoresis can be used in special separation devices to separate colloidal particles based on their sizes. ... Read More

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample ... Read More

Super-resolving Properties of Metallodielectric Stacks

N. Katte[1], J. Haus[1], J.B. Serushema[1], and M. Scalora[2]
[1]University of Dayton, Dayton, OH, USA
[2]Charles M. Bowden Research Center, Redstone Arsenal, AL, USA

We show that diffraction can be suppressed in a one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs. The two methods ... Read More

Numerical Simulation of a Joule Heating Problem

S.M.F. Garcia[1], and P. Seshaiyer[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]George Mason University, Fairfax, VA, USA

In this work we consider a 1-D mathematical model that describes a heating problem combined with electrical current flows in a body which may undergo a phase change as a result of the heat generated by the current, so-called Joule heating. The model consists of a system of nonlinear ... Read More

Modeling Microfluidic Separations Using COMSOL Multiphysics

B.A. Finlayson[1], and R.A. Shaw[2]
[1]University of Washington, Seattle, WA, USA
[2]National Research Council of Canada, Winnipeg, MB, Canada

Infrared spectroscopy can be used to identify chemicals in a stream provided the signal is strong enough. A microfluidic device is modeled here with the objective of separating serum components so as to enhance the metabolite/protein concentration ratio. Serum contains creatinine (a ... Read More

Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M.I. Cheema, and A.G. Kirk
McGill University, Montreal, QC, Canada

Due to the inseparability of the wave equation, numerical methods are needed to develop an accurate electromagnetic model for various axisymmetric resonators such as micro-discs and micro-toroids. Our purpose is the implementation of a perfectly matched layer to determine the quality ... Read More

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in ... Read More

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed ... Read More

COMSOL Based Multiphysics Analysis Of Surface Roughness Effects On Capacitance In RF MEMS Varactors

D. Mondal[1], R. Mukherjee[2], D. Mukherjee[1], and C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University Shibpur, Howrah, West Bengal, India
[2]School of VLSI Technology, Bengal Engineering and Science University Shibpur, Howrah, West Bengal, India

In this paper, the effects of roughness in the surfaces of the plates caused due to nonuniform etching during their release and/or due to defects in the original wafer on the capacitance in RF-MEMS parallel plate varactors are analyzed. Capacitance extraction due to surface roughness has ... Read More

Modeling PIN Photodiodes

R.W. Pryor
Pryor Knowledge Systems Inc., Bloomfield Hills, MI, USA

This paper presents one approach to the modeling of an abrupt junction PIN photodiode light sensor using COMSOL Multiphysics software and the incorporated SPICE® capability. The current model is built using the capabilities of SPICE in COMSOL Multiphysics 4.0. This model demonstrates the ... Read More