Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Chemical Reaction Engineering: Difusão com Biotransformação

D. R. M. Vieira [1], S. A. Cardoso [1], A. S. Santos [1],
[1] Universidade Federal do Pará, Pará, Brasil

A biotransformação de substratos utilizando enzimas imobilizadas em nanopartículas presentes num meio fluido (substrato), contido num bioreator CSTR, foi investigada. O software COMSOL Multiphysics foi usado para simular o sistema através do uso das equações de difusão de espécies apropriadas para o consumo do substrato. Nessa investigação, a difusão na superfície da nanopartícula, onde ocorre a ...

Superhydrophobic Surfaces for Friction Reduction Applications

Y. K. Hwa [1]
[1] National University of Singapore, Singapore

The present work investigates the role of suspended liquid-gas interfaces for applications involving the reduction in flow resistance using the COMSOL multiphysics software. A pressure-driven viscous flow of a liquid through microtubes containing superhydrophobic surfaces patterned with alternating micro-grooves and ribs has been considered. Employing a 3D simulation, a fully-developed laminar ...

Thermal Simulation Of Chemical-Synthesized Thick Film As Thermal Interface Material In Downlight LED

M. J. Wen [1]
[1] Universiti Sains Malaysia, Malaysia

As the light output of the LED is strongly dependent on the thermal performance, thermal interface material (TIM) has become an area of interest that can be used to sink more heat out to the ambient. In COMSOL Multiphysics, physics interfaces like joule heating, heat transfer in solid and laminar flow are used to simulate the thermal dissipation with the specific material properties and ...

Definition of Optimization Problem for Electromagnetic Linear Actuator

P. Piskur[1], W. Tarnowski[1], and K. Just[1]

[1]Koszalin Technical University, Koszalin, Poland

In this paper a poly-optimization of the design of the electromechanical actuator is presented. The shape of the actuator is defined by the decision variables. The number of decision variables under consideration is up to ten but in the next step while the multi-coils system will be analyzed the number of decision variables will increase up to hundred, so the genetic algorithm has been used. The ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

Stress Field Simulation for Quantitative Ultrasound Elasticity Imaging

L. Yuan[1] and P.C. Pedersen[1]
[1]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison between these results and analytical solutions was used to further validate that stress drops off with ...

Application of Solution Mapping to Reduce Computational Time in Actively Cooled Power Electronics

K. Lowe [1,2], and Rao V. Arimilli[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA

In some power electronic applications the available coolant temperature is close to maximum and controlling operating temperature becomes more challenging, for which new thermal management schemes must be considered. COMSOL predicts the 3D fluid behavior and 3D temperature distribution within an actively cooled power electronic structure. A solution mapping method is implemented to more ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...

2701 - 2710 of 3394 First | < Previous | Next > | Last