Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of Electromagnetic Shielding, a Comparison between Experiment and FEM Simulation

G. Sun [1], C. De Blasiis [1], O. Sekula [1], P. Corsaro [1],
[1] Brugg Kabel AG, Brugg, Switzerland

The loaded underground high voltage cable generates magnetic field with industrial frequency. Depending on the current rating and cable allocation, the magnetic exposure to public area may exceed the requested limit from customer. Extra shielding should then be applied. A primary FEM study shows that aluminum plate has a good shielding effect; the installation condition of the plate can however ...

Model of Moisture Dynamics in Road Systems of Sweden

H. Rasul [1], M. Wu [1], B. Olofsson [1],
[1] KTH, Stockholm, Sweden

In high latitude regions, the moisture dynamics in road systems is more complicated due to freezing/thawing. A better understanding of moisture dynamics in road systems in cold regions is essential for a stable road structure design and also for a sustainable road hydrologic environment. An observation system was installed in a highway in Sweden to detect water, heat and solute dynamics during ...

基于 COMSOL 的 HVPE 法 GaN 单晶生长过程模拟

兰飞飞 [1],
[1] 中国电子科技集团公司第四十六研究所,天津,中国

利用 COMSOL Multiphysics® 软件中流体传热接口、层流接口、化学反应接口对 HVPE 法单晶生长过程进行模拟。建立了基于 HVPE 生长室内部结构的简单二维模型,并进行了标准的网格剖分,通过物理场耦合,并添加了生长过程中所需的生长气氛,研究了 HVPE 法进行 GaN 单晶生长过程中衬底表面厚度分布的变化规律。通过模拟结果发现,衬底表面存在显著的边缘效应,边缘处厚度显著高于衬底表面其它区域。


程屾 [1], 刑燕好 [1]
[1] 沈阳工业大学,沈阳,中国

随着电力工业的快速发展,母线板作为汇集、分配和传送电能的装置,广泛应用于各个电工领域。由于流过母线板的电流一般较大,其温升发热问题不容忽视。该问题涉及电磁场、温度场、流场及位移场等多个物理场的综合。为了更好地研究其发热散热问题,本文采用 COMSOL Multiphysics® 多物理场直接耦合分析软件,基于有限元理论,在考虑设备几何形状和材料物理特性影响的基础上,对母线板进行三维建模。分别在瞬态和稳态情况下对母线板进行电—热—力耦合场分析,电—热—流耦合场分析,从而研究母线板的温度、电流密度分布规律和由于热膨胀引起的形变大小。最后加入层流,分析在考虑气流冷却效应时,母线板的散热情况,并对仿真结果进行研究分析。

Simulation of Slag/Gas and Slag/Iron Interface Tilting in Blast Furnace Hearth During Slag Tapping

Y. Kaymak [1], T. Hauck [1], R. Lin [2] , H. Rausch [2]
[1] VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, Germany
[2] AG der Dillinger Hüttenwerke, Dillingen, Germany

The blast furnace hearth drainage constitutes a major part of the blast furnace operation. Especially, keeping track of the iron and slag levels is crucial to adapt the tapping strategy. The operational target is usually not only to empty the blast furnace as far as possible but also to keep the slag below a critical level to prevent flooding of the tuyeres where the hot blast is injected into ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Numerical and Experimental Analysis of Natural and Mixed Convection Heat Transfer for Vertically Arranged DIMM

G. Petrone, and G. Cammarata
University of Catania, Catania, Italy

 It is commonly recognized that careful thermal design of electronic equipments represents an unavoidable pre-production step in order to ensure reliability and performance of those components during their functioning. This paper mainly concerns a comparison between experimental and numerical results obtained in studying thermal dissipation in natural and mixed convection conditions for RAM ...

Two-dimensional Analysis of Triple Coupled Physics of Structural Mechanics, Diffusion and Heat Transfer in a Gas Pipe

P. Lee-Sullivan[1], and M. Haghighi-Yazdi[1]
[1]Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada

In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary conditions were based on the analysis by Rambert et al. who have published the most advanced modeling work in ...

Model-Based Calibration System for Direct Thermal Printing

W. Vetterling[1], and Z. Peng[1]
[1]Zink Imaging, Inc., Bedford, Massachusetts, USA

This document describes a method for maintaining the long-term calibration of a full color direct thermal printer. An essential component of the system is a thermal model created using COMSOL Multiphysics that allows fitting of color data recorded at different temperatures and exposure times to model results for the same conditions. The fitted results reveal the depth and thickness of color dye ...